کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625119 1340321 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper bounds for binary identifying codes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Upper bounds for binary identifying codes
چکیده انگلیسی

A nonempty set of words in a binary Hamming space Fn is called an r-identifying code if for every word the set of codewords within distance r from it is unique and nonempty. The smallest possible cardinality of an r-identifying code is denoted by Mr(n). In this paper, we consider questions closely related to the open problem whether Mt+r(n+m)⩽Mt(m)Mr(n) is true. For example, we show results like M1+r(n+m)⩽4M1(m)Mr(n), which improve previously known bounds. We also consider codes which identify sets of words of size at most ℓ. The smallest cardinality of such a code is denoted by . We prove that is true for all ℓ⩾r+3 when r⩾1 and t=1. We also obtain a result M1(n+1)⩽(2+εn)M1(n) where εn→0 when n→∞. This bound is related to the conjecture M1(n+1)⩽2M1(n). Moreover, we give constructions for the best known 1-identifying codes of certain lengths.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 42, Issue 3, March 2009, Pages 277-289