کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625140 1340322 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized parking functions, descent numbers, and chain polytopes of ribbon posets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Generalized parking functions, descent numbers, and chain polytopes of ribbon posets
چکیده انگلیسی

We consider the inversion enumerator In(q), which counts labeled trees or, equivalently, parking functions. This polynomial has a natural extension to generalized parking functions. Substituting q=−1 into this generalized polynomial produces the number of permutations with a certain descent set. In the classical case, this result implies the formula In(−1)=En, the number of alternating permutations. We give a combinatorial proof of these formulas based on the involution principle. We also give a geometric interpretation of these identities in terms of volumes of generalized chain polytopes of ribbon posets. The volume of such a polytope is given by a sum over generalized parking functions, which is similar to an expression for the volume of the parking function polytope of Pitman and Stanley.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 44, Issue 2, February 2010, Pages 145-154