کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625167 1340325 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Veronese construction for formal power series and graded algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The Veronese construction for formal power series and graded algebras
چکیده انگلیسی

Let (an)n⩾0 be a sequence of complex numbers such that its generating series satisfies for some polynomial h(t). For any r⩾1 we study the transformation of the coefficient series of h(t) to that of h〈r〉(t) where . We give a precise description of this transformation and show that under some natural mild hypotheses the roots of h〈r〉(t) converge when r goes to infinity. In particular, this holds if ∑n⩾0antn is the Hilbert series of a standard graded k-algebra A. If in addition A is Cohen–Macaulay then the coefficients of h〈r〉(t) are monotonically increasing with r. If A is the Stanley–Reisner ring of a simplicial complex Δ then this relates to the rth edgewise subdivision of Δ—a subdivision operation relevant in computational geometry and graphics—which in turn allows some corollaries on the behavior of the respective f-vectors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 42, Issue 4, May 2009, Pages 545-556