کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625207 1340328 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalizations of Khovanskiĭ's theorems on the growth of sumsets in Abelian semigroups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Generalizations of Khovanskiĭ's theorems on the growth of sumsets in Abelian semigroups
چکیده انگلیسی

We show that if P is a lattice polytope in the nonnegative orthant of Rk and χ is a coloring of the lattice points in the orthant such that the color χ(a+b) depends only on the colors χ(a) and χ(b), then the number of colors of the lattice points in the dilation nP of P is for large n given by a polynomial (or, for rational P, by a quasipolynomial). This unifies a classical result of Ehrhart and Macdonald on lattice points in polytopes and a result of Khovanskiĭ on sumsets in semigroups. We also prove a strengthening of multivariate generalizations of Khovanskiĭ's theorem. Another result of Khovanskiĭ states that the size of the image of a finite set after n applications of mappings from a finite family of mutually commuting mappings is for large n a polynomial. We give a combinatorial proof of a multivariate generalization of this theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 41, Issue 1, July 2008, Pages 115-132