کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625404 1340357 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extensions of the linear bound in the Füredi–Hajnal conjecture
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Extensions of the linear bound in the Füredi–Hajnal conjecture
چکیده انگلیسی

We present two extensions of the linear bound, due to Marcus and Tardos, on the number of 1-entries in an n×n (0,1)-matrix avoiding a fixed permutation matrix. We first extend the linear bound to hypergraphs with ordered vertex sets and, using previous results of Klazar, we prove an exponential bound on the number of hypergraphs on n vertices which avoid a fixed permutation. This, in turn, solves various conjectures of Klazar as well as a conjecture of Brändén and Mansour. We then extend the original Füredi–Hajnal problem from ordinary matrices to d-dimensional matrices and show that the number of 1-entries in a d-dimensional (0,1)-matrix with side length n which avoids a d-dimensional permutation matrix is O(nd−1).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 38, Issue 2, February 2007, Pages 258-266