کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625419 1340358 2006 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Involutions for upper triangular matrix algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Involutions for upper triangular matrix algebras
چکیده انگلیسی

In this paper we describe completely the involutions of the first kind of the algebra UTn(F) of n×n upper triangular matrices. Every such involution can be extended uniquely to an involution on the full matrix algebra. We describe the equivalence classes of involutions on the upper triangular matrices. There are two distinct classes for UTn(F) when n is even and a single class in the odd case.Furthermore we consider the algebra UT2(F) of the 2×2 upper triangular matrices over an infinite field F of characteristic different from 2. For every involution ∗, we describe the ∗-polynomial identities for this algebra. We exhibit bases of the corresponding ideals of identities with involution, and compute the Hilbert (or Poincaré) series and the codimension sequences of the respective relatively free algebras.Then we consider the ∗-polynomial identities for the algebra UT3(F) over a field of characteristic zero. We describe a finite generating set of the ideal of ∗-identities for this algebra. These generators are quite a few, and their degrees are relatively large. It seems to us that the problem of describing the ∗-identities for the algebra UTn(F) of the n×n upper triangular matrices may be much more complicated than in the case of ordinary polynomial identities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 37, Issue 4, October 2006, Pages 541-568