کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
462625 696877 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low space-complexity and low power semi-systolic multiplier architectures over GF(2m) based on irreducible trinomial
ترجمه فارسی عنوان
پیچیدگی فضای کم و معماری چندضریبی نیمه سیستولیک توان کم روی GF (2m) بر اساس سه تایی ناپایدار
کلمات کلیدی
چندضریبی سه گانه؛ ضرب میدان محدود؛ آرایه سيستوليک؛ معماری موازی؛ پردازش خط لوله؛ VLSI
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی


• Propose low power bit-serial and digit-serial semi-systolic multiplier architectures over GF(2m).
• Develop a new Progressive Reduction Technique (PPR).
• Develop affine and nonlinear task scheduling functions.
• Develop affine and nonlinear task projection onto processors.
• Provide ASIC Implementation for proposed and previously published designs.

This paper proposes a three bit-serial and digit-serial semi-systolic GF(2m) multipliers using Progressive Product Reduction (PPR) technique. These architectures are obtained by converting the GF(2m) multiplication algorithm into an iterative algorithm using systematic techniques for scheduling the computational tasks and mapping them to Processing Elements (PE). Three different semi systolic arrays were obtained. ASIC implementation of the proposed designs and previously published schemes were used to verify the performance of the proposed designs. One proposed design has at least 29% lower area compared to previously published bit/digit serial multipliers. This design has also at least 70% lower power compared to previously published bit/digit serial multipliers. Another proposed design has at least 12% lower power-delay product (PDP) compared to previously published bit/digit serial multipliers. This makes the proposed designs more suited to resource-constrained embedded applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microprocessors and Microsystems - Volume 40, February 2016, Pages 45–52
نویسندگان
, ,