کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626283 1631784 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm
ترجمه فارسی عنوان
یک بررسی از پیش بینی میزان نوسان آب در دریاچه ارومیه با استفاده از دستگاه بردار پشتیبانی با الگوریتم کره ای
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی


• Forecasting lake level at various horizons is reported here.
• SVM coupled with FA was used to forecast lake level.
• Results demonstrate the SVM–FA superiority.

Forecasting lake level at various horizons is a critical issue in navigation, water resource planning and catchment management. In this article, multistep ahead predictive models of predicting daily lake levels for three prediction horizons were created. The models were developed using a novel method based on support vector machine (SVM) coupled with firefly algorithm (FA). The FA was applied to estimate the optimal SVM parameters. Daily water-level data from Urmia Lake in northwestern Iran were used to train, test and validate the used technique. The prediction results of the SVM–FA models were compared to the genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results showed that an improvement in the predictive accuracy and capability of generalization can be achieved by the SVM–FA approach in comparison to the GP and ANN in 1 day ahead lake level forecast. Moreover, the findings indicated that the developed SVM–FA models can be used with confidence for further work on formulating a novel model of predictive strategy for lake level prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 270, 1 November 2015, Pages 731–743
نویسندگان
, , , , , , ,