کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626354 1631786 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Fast Parallel Algorithm for Constructing Independent Spanning Trees on Parity Cubes
ترجمه فارسی عنوان
الگوریتم موازی سریع برای ساختن درختان مستقل در مکعبهای همبستگی
کلمات کلیدی
الگوریتم های موازی، مستقل درختان درختی، مکعب شباهت، شبکه های ارتباطی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی


• We study the independent spanning trees (IST) problem on parity cubes PQn.
• We present a non-recursive scheme for constructing n ISTs in PQn.
• The algorithm can be parallelized to run in O(n) time using 2n processors.

Zehavi and Itai (1989) proposed the following conjecture: every k-connected graph has k independent spanning trees (ISTs for short) rooted at an arbitrary node. An n-dimensional parity cube, denoted by PQn, is a variation of hypercubes with connectivity n   and has many features superior to those of hypercubes. Recently, Wang et al. (2012) confirmed the ISTs conjecture by providing an O(NlogN)O(NlogN) algorithm to construct n ISTs rooted at an arbitrary node on PQn  , where N=n2N=2n is the number of nodes in PQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we present a non-recursive and fully parallelized approach to construct n ISTs rooted at an arbitrary node of PQn   in O(logN)O(logN) time using N processors. In particular, the constructing rule of spanning trees is simple and the proof of independency is easier than ever before.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 268, 1 October 2015, Pages 489–495
نویسندگان
, , , ,