کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626431 1631791 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices
ترجمه فارسی عنوان
حل عددی معادلات دیفرانسیل کسر چند منظوره با استفاده از ماتریس عملیاتی توابع مثلثی به صورت کلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی


• Present article proposes numerical technique for the solution of linear and nonlinear multi-order fractional differential equations.
• The proposed method is based on newly computed generalized triangular function operational matrices for Riemann–Liouville fractional order integral.
• Theoretical error analysis is performed to estimate the upper bound of absolute error between the exact Riemann–Liouville fractional order integral and its approximation in the triangular functions domain.

Most fractional differential equations do not have closed form solutions. Development of effective numerical techniques has been an interesting research topic for decades. In this context, this paper proposes a numerical technique, for solving linear and nonlinear multi-order fractional differential equations, based on newly computed generalized triangular function operational matrices for Riemann–Liouville fractional order integral. The orthogonal triangular functions are evolved from a simple dissection of piecewise constant orthogonal block pulse functions. Theoretical error analysis is performed to estimate the upper bound of absolute error between the exact Riemann–Liouville fractional order integral and its approximation in the triangular functions domain. Numerical examples are considered for investigating the applicability and effectiveness of proposed technique to solve multi-order fractional differential equations. The results encourage the use of orthogonal TFs for analysis of real processes exhibiting fractional dynamics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 263, 15 July 2015, Pages 189–203
نویسندگان
, ,