کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4627337 | 1631809 | 2014 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
n-Steps ahead software reliability prediction using the Kalman filter
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents KSL, a new software reliability growth model (SRGM) based on the Kalman filter with a sub filter and the Laplace trend test. We applied the model to the Linux operating system kernel as a case study to predict the absolute and relative (per lines of code) number of faults n-steps ahead. The Laplace trend test is applied to detect when the series no longer follows a homogeneous Poisson process, improving the confidence level. An example is provided with a prediction of 13Â months ahead on the number of faults with 8% error. The results (i.e. predictive capability) indicated that the proposed approach outperforms the S-shaped prediction model, Weibull, and Exponentiated Weibull distributions, as well as typical and OS-ELM Neural networks when the series has a short number of observations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 245, 15 October 2014, Pages 116-134
Journal: Applied Mathematics and Computation - Volume 245, 15 October 2014, Pages 116-134
نویسندگان
Edson L. Ursini, Paulo S. Martins, Regina L. Moraes, Varese S. Timóteo,