کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4627595 1631812 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical analysis of a new space–time variable fractional order advection–dispersion equation
ترجمه فارسی عنوان
تجزیه و تحلیل عددی از یک فضای جدید متغیر زمان پراکندگی معکوس
کلمات کلیدی
مشتق جزئی متغیر، معادله پراکنش، طرح نامتعارف اویلر، ثبات، همگرایی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 242, 1 September 2014, Pages 541–550
نویسندگان
, , , , ,