کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4628069 1631822 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new high order space derivative discretization for 3D quasi-linear hyperbolic partial differential equations
ترجمه فارسی عنوان
توزیع فضای مشتق شده با فضای جدید برای معادلات دیفرانسیل با مشتقات جزئی هذلولی خطی سه بعدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) for the solution of three dimensional quasi-linear hyperbolic partial differential equations, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We mainly discretize the space derivative terms using fourth order approximation and time derivative term using second order approximation. We describe the derivation procedure in details and also discuss how our formulation is able to handle the wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. The proposed method behaves like a fourth order method for a fixed value of (k/h2). Some examples and their numerical results are provided to justify the usefulness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 232, 1 April 2014, Pages 529-541
نویسندگان
, , ,