کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4628227 | 1631817 | 2014 | 19 صفحه PDF | دانلود رایگان |

A higher-order compact locally one-dimensional (LOD) finite difference method for two-dimensional nonhomogeneous parabolic differential equations is proposed. The resulting scheme consists of two one-dimensional tridiagonal systems, and all computations are implemented completely in one spatial direction as for one-dimensional problems. The solvability and the stability of the scheme are proved almost unconditionally. The error estimates are obtained in the discrete H1,L2 and L∞L∞ norms, and show that the proposed compact LOD method has the accuracy of the second-order in time and the fourth-order in space. Two Richardson extrapolation algorithms are presented to increase the accuracy to the fourth-order and the sixth-order in both time and space when the time step is proportional to the spatial mesh size. Numerical results demonstrate the accuracy of the compact LOD method and the high efficiency of its extrapolation algorithms.
Journal: Applied Mathematics and Computation - Volume 237, 15 June 2014, Pages 512–530