کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4629469 | 1340581 | 2012 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
K-means particle swarm optimization with embedded chaotic search for solving multidimensional problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The proposed approach inherited the paradigm in particle swarm optimization (PSO) to implement a chaotic search around global best position (gbest) and enhanced by K-means clustering algorithm, named KCPSO. K-means with clustering property in PSO resulted in rapid convergence while chaotic search with ergodicity characteristic in PSO contributed to refine gbest. Experimental results indicated that the proposed KCPSO approach could evidently speed up convergence and successfully solving complex multidimensional problems. Besides, KCPSO was compared with canonical PSO in performance. And, a case study was also employed to demonstrate the validity of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 6, 25 November 2012, Pages 3091–3099
Journal: Applied Mathematics and Computation - Volume 219, Issue 6, 25 November 2012, Pages 3091–3099
نویسندگان
Min-Yuan Cheng, Kuo-Yu Huang, Hung-Ming Chen,