کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4629783 | 1340586 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical simulation and convergence analysis of a finite volume scheme for solving general breakage population balance equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a finite volume scheme (FVS) for solving general breakage population balance equations (BPBEs). In particular, the number density based BPBE is transformed to the form of a mass conservation law. Then it becomes easy to apply the well known FVSs that have an important property of mass conservation. Following Kumar and Warnecke for fixed pivot (FP) method [16] and cell average technique (CAT) [15], the stability and the convergence analysis of the semi-discretized FVS are studied. Unlike the CAT and the FP method, the FVS is second order consistent independently of the type of meshes. We also observe that FVS gives second order convergence rate on four different types of uniform and non-uniform meshes with non-decreasing behavior of mesh width. Nevertheless, one order better accuracy than the FP method is achieved on locally uniform meshes. It is also noticed that on non-uniform random meshes the FVS shows one order and two orders higher accuracy than the CAT and the FP method, respectively. The mathematical results of convergence analysis are validated numerically by taking three test problems. The numerical simulations are also compared with the results obtained by the CAT and the FP method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 10, 15 January 2013, Pages 5140-5151
Journal: Applied Mathematics and Computation - Volume 219, Issue 10, 15 January 2013, Pages 5140-5151
نویسندگان
Rajesh Kumar, Jitendra Kumar,