کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4630649 1340604 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Second derivative of an iterative solver boosts its acceleration by Koçak's method
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Second derivative of an iterative solver boosts its acceleration by Koçak's method
چکیده انگلیسی
Many mathematical applications involve the solution of a nonlinear equation x = g(x). The target fixed-point z of g may be a zero of a related function f(x), or equivalently, a root of the equation f(x) = 0. It is an important and challenging task to develop practical, efficient, and robust solvers. Koçak's method achieves acceleration by generating a superior secondary solver gK via a transformation gK = (g − mx)/(1 − m) where m is a linear combination of the first derivative of g at two different x values, namely the current iterate and the target z. gK is the result of a simple rearrangement of the equation x = g after subtracting the product mx from both sides. Therefore gK(z) = g(z) = z. The process is piecewise linearization where m is the slope of a straight line approximating g. Ideally, m = (g − z)/(x − z). Let n denote the convergence order of g. The initial version employs w = 1/2 irrespective of n. Its gK is of third order when n is 1 or 2; when n exceeds 2 the order remains the same. The second version harnesses w = 1/n when n exceeds 2 and obtains a gK of order n + 1. This manuscript reports a third version involving the second derivative of g.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 3, 1 October 2011, Pages 893-898
نویسندگان
,