کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4630981 1340613 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularization tools and robust optimization for ill-conditioned least squares problem: A computational comparison
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Regularization tools and robust optimization for ill-conditioned least squares problem: A computational comparison
چکیده انگلیسی

Least squares problems arise frequently in many disciplines such as image restorations. In these areas, for the given least squares problem, usually the coefficient matrix is ill-conditioned. Thus if the problem data are available with certain error, then after solving least squares problem with classical approaches we might end up with a meaningless solution. Tikhonov regularization, is one of the most widely used approaches to deal with such situations. In this paper, first we briefly describe these approaches, then the robust optimization framework which includes the errors in problem data is presented. Finally, our computational experiments on several ill-conditioned standard test problems using the regularization tools, a Matlab package for least squares problem, and the robust optimization framework, show that the latter approach may be the right choice.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 20, 15 June 2011, Pages 7985–7990
نویسندگان
,