کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4631407 1340622 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A non-separable solution of the diffusion equation based on the Galerkin’s method using cubic splines
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A non-separable solution of the diffusion equation based on the Galerkin’s method using cubic splines
چکیده انگلیسی

The two dimensional diffusion equation of the form ∂2u∂x2+∂2u∂y2=1D∂u∂t is considered in this paper. We try a bi-cubic spline function of the form ∑i,j=0N,NCi,j(t)Bi(x)Bj(y) as its solution. The initial coefficients Ci,j(0) are computed simply by applying a collocation method; Ci,j = f(xi, yj) where f(x, y) = u(x, y, 0) is the given initial condition. Then the coefficients Ci,j(t) are computed by X(t) = etQX(0) where X(t) = (C0,1, C0,1, C0,2, … , C0,N, C1,0, … , CN,N) is a one dimensional array and the square matrix Q is derived from applying the Galerkin’s method to the diffusion equation. Note that this expression provides a solution that is not necessarily separable in space coordinates x, y. The results of sample calculations for a few example problems along with the calculation results of approximation errors for a problem with known analytical solution are included.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 5, 1 November 2010, Pages 1831–1837
نویسندگان
, , , , , , ,