کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4632673 1340651 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Galerkin finite element approximation of symmetric space-fractional partial differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Galerkin finite element approximation of symmetric space-fractional partial differential equations
چکیده انگلیسی

In this paper, symmetric space-fractional partial differential equations (SSFPDE) with the Riesz fractional operator are considered. The SSFPDE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order 2β ∈ (0, 1) and 2α ∈ (1, 2], respectively. We prove that the variational solution of the SSFPDE exists and is unique. Using the Galerkin finite element method and a backward difference technique, a fully discrete approximating system is obtained, which has a unique solution according to the Lax–Milgram theorem. The stability and convergence of the fully discrete schemes are derived. Finally, some numerical experiments are given to confirm our theoretical analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 6, 15 November 2010, Pages 2534–2545
نویسندگان
, , ,