کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4632740 | 1340652 | 2010 | 14 صفحه PDF | دانلود رایگان |

In this paper, we study the convergence and stability of the stochastic theta method (STM) for a class of index 1 stochastic delay differential algebraic equations. First, in the case of constrained mesh, i.e., the stepsize is a submultiple of the delay, it is proved that the method is strongly consistent and convergent with order 1/2 in the mean-square sense. Then, the result is further extended to the case of non-constrained mesh where we employ linear interpolation to approximate the delay argument. Later, under a sufficient condition for mean-square stability of the analytical solution, it is proved that, when the stepsizes are sufficiently small, the STM approximations reproduce the stability of the analytical solution. Finally, some numerical experiments are presented to illustrate the theoretical findings.
Journal: Applied Mathematics and Computation - Volume 215, Issue 11, 1 February 2010, Pages 4008–4021