کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4634346 1631836 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel meta-heuristic algorithms for clustering web documents
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Novel meta-heuristic algorithms for clustering web documents
چکیده انگلیسی

Clustering the web documents is one of the most important approaches for mining and extracting knowledge from the web. Recently, one of the most attractive trends in clustering the high dimensional web pages has been tilt toward the learning and optimization approaches. In this paper, we propose novel hybrid harmony search (HS) based algorithms for clustering the web documents that finds a globally optimal partition of them into a specified number of clusters. By modeling clustering as an optimization problem, first, we propose a pure harmony search-based clustering algorithm that finds near global optimal clusters within a reasonable time. Then, we hybridize K-means and harmony clustering in two ways to achieve better clustering. Experimental results reveal that the proposed algorithms can find better clusters when compared to similar methods and also illustrate the robustness of the hybrid clustering algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 201, Issues 1–2, 15 July 2008, Pages 441–451
نویسندگان
, , , ,