کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4634867 | 1340701 | 2007 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Particle swarm optimization (PSO) is a population-based heuristic optimization technique. It has been developed to be a prominent evolution algorithm due to its simplicity of implementation and ability to quickly converge to a reasonable solution. However, it has also been reported that the algorithm has a tendency to get stuck in a near-optimal solution in multi-dimensional spaces. To overcome the stagnation in searching a globally optimal solution, a PSO method with nonlinear time-varying evolution (PSO-NTVE) is proposed to approach the optimal solution closely. When determining the parameters in the proposed method, matrix experiments with an orthogonal array are utilized, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. To demonstrate the performance of the proposed PSO-NTVE method, five well-known benchmarks are used for illustration. The results will show the feasibility and validity of the proposed method and its superiority over several previous PSO algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 191, Issue 1, 1 August 2007, Pages 272-279
Journal: Applied Mathematics and Computation - Volume 191, Issue 1, 1 August 2007, Pages 272-279
نویسندگان
Chia-Nan Ko, Ying-Pin Chang, Chia-Ju Wu,