کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4635428 | 1340710 | 2007 | 14 صفحه PDF | دانلود رایگان |

The laminar two-dimensional pulsatile flow of blood under the influence of externally imposed periodic body acceleration through a stenosed artery is studied in the paper. A mathematical model is developed by treating blood as a non-Newtonian fluid characterised by the generalised Power-law model incorporating both the shear-thinning and shear-thickening characteristics of the streaming blood. The arterial wall has been treated as an elastic (moving wall) cylindrical tube having a stenosis in its lumen. The unsteady flow mechanism in the stenosed artery subject to a pulsatile pressure gradient arising from the normal functioning of the heart has been accounted for. The finite difference scheme helps estimating the effects of periodic body acceleration and the non-Newtonian rheology of the flowing blood on the flow velocity, the rate of flow, the wall shear stress and the fluid acceleration through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration.
Journal: Applied Mathematics and Computation - Volume 189, Issue 1, 1 June 2007, Pages 766–779