کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4636349 | 1340722 | 2007 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Solutions of linear ordinary differential equations with non-singular varying coefficients by using the corrected Fourier series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Solutions of linear ordinary differential equations (ODEs) with non-singular varying coefficients are constructed by using the corrected Fourier series [Q.H. Zhang, S. Chen, Y. Qu, Corrected Fourier series and its application to function approximation, Int. J. Math. Math. Sci. (1) (2005) 33-42]. In essence our method is a Galerkin method with the corrected Fourier series as its basis functions. For mth order ODEs the m linearly independent solutions are uniformly convergent until their mth derivatives, i.e., no Gibbs oscillations in the solutions themselves and in their derivatives until mth order over the ODE's entire interval. Procedures of obtaining two (three) linearly independent Galerkin solutions are presented for second (third) order ODEs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 187, Issue 2, 15 April 2007, Pages 765-776
Journal: Applied Mathematics and Computation - Volume 187, Issue 2, 15 April 2007, Pages 765-776
نویسندگان
Qing-Hua Zhang, Shuiming Chen, Jian Ma, Yuanyuan Qu,