کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4645539 | 1342042 | 2011 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical properties of high order discrete velocity solutions to the BGK kinetic equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A high order numerical method for the solution of model kinetic equations is proposed. The new method employs discontinuous Galerkin (DG) discretizations in the spatial and velocity variables and Runge–Kutta discretizations in the temporal variable. The method is implemented for the one-dimensional Bhatnagar–Gross–Krook equation. Convergence of the numerical solution and accuracy of the evaluation of macroparameters are studied for different orders of velocity discretization. Synthetic model problems are proposed and implemented to test accuracy of discretizations in the free molecular regime. The method is applied to the solution of the normal shock wave problem and the one-dimensional heat transfer problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 61, Issue 4, April 2011, Pages 410-427
Journal: Applied Numerical Mathematics - Volume 61, Issue 4, April 2011, Pages 410-427