کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4645547 | 1342042 | 2011 | 24 صفحه PDF | دانلود رایگان |

We present a new coupled discretization approach for species transport in an incompressible fluid. The Navier–Stokes equations for the flow are discretized by the divergence-free Scott–Vogelius element on barycentrically refined meshes guaranteeing LBB stability. The convection–diffusion equation for species transport is discretized by the Voronoi finite volume method. In accordance to the continuous setting, due to the exact integration of the normal component of the flow through the Voronoi surfaces, the species concentration fulfills discrete global and local maximum principles. Besides of the numerical scheme itself, we present important aspects of its implementation. Further, for the case of homogeneous Dirichlet boundary conditions, we give a convergence proof for the coupled scheme. We report results of the application of the scheme to the interpretation of limiting current measurements in an electrochemical flow cell with cylindrical shape.
Journal: Applied Numerical Mathematics - Volume 61, Issue 4, April 2011, Pages 530-553