کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4645848 1342067 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral methods in linear stability. Applications to thermal convection with variable gravity field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
Spectral methods in linear stability. Applications to thermal convection with variable gravity field
چکیده انگلیسی

The onset of convection in a horizontal layer of fluid heated from below in the presence of a gravity field varying across the layer is numerically investigated. The eigenvalue problem governing the linear stability of the mechanical equilibria of the fluid, in the case of free boundaries, is a sixth order differential equation with Dirichlet and hinged boundary conditions. It is transformed into a system of second order differential equations supplied only with Dirichlet boundary conditions. Then it is solved using two distinct classes of spectral methods namely, weighted residuals (Galerkin type) methods and a collocation (pseudospectral) method, both based on Chebyshev polynomials. The methods provide a fairly accurate approximation of the lower part of the spectrum without any scale resolution restriction. The Viola's eigenvalue problem is considered as a benchmark one. A conjecture is stated for the first eigenvalue of this problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 59, Issue 6, June 2009, Pages 1290-1302