کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4645901 1342070 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition
چکیده انگلیسی

In this paper, we present error estimates of Legendre spectral method with essential imposition of Neumann boundary condition. The algorithm was firstly proposed by Auteri, Parolini and Quartapelle. This method differs from the classical spectral methods for Neumann boundary value problems. The homogeneous boundary condition is satisfied exactly. Moreover, a double diagonalization process is employed, instead of the full stiffness matrices encountered in the classical variational formulation of the problem with a weak natural imposition of the derivative boundary condition. We also consider nonhomogeneous Neumann data by means of a lifting. In particular, the lifting in this paper is expressed explicitly and is different from that by Auteri, Parolini and Quartapelle. For analyzing the numerical errors, some basic results on Legendre quasi-orthogonal approximations are established. The convergence of proposed schemes is proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 59, Issue 10, October 2009, Pages 2444-2451