کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4646082 | 1342081 | 2009 | 14 صفحه PDF | دانلود رایگان |

This paper is concerned with the strong stability preserving (SSP) time discretizations for semi-discrete systems, obtained from applying the method of lines to time-dependent partial differential equations. We focus on the construction of explicit hybrid methods with nonnegative coefficients, which are a class of multistep methods incorporating a function evaluation at an off-step point. A series of new SSP methods are found. Among them, the low order methods are more efficient than some well known SSP Runge–Kutta or linear multistep methods. In particular, we present some fifth to seventh order methods with nonnegative coefficients, which have healthy CFL coefficients. Finally, some numerical experiments on the Burgers equation are given.
Journal: Applied Numerical Mathematics - Volume 59, Issue 5, May 2009, Pages 891-904