کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646092 1342081 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion
چکیده انگلیسی

The aim of this paper is to introduce a deterministic particle method for the solution of two strongly coupled reaction–diffusion equations. In these equations the diffusion is nonlinear because we consider the cross and self-diffusion effects. The reaction terms on which we focus are of the Lotka–Volterra type.Our treatment of the diffusion terms is a generalization of the idea, introduced in [P. Degond, F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput. 11 (1990) 293–310] for the linear diffusion, of interpreting Fick's law in a deterministic way as a prescription on the particle velocity. Time discretization is based on the Peaceman–Rachford operator splitting scheme.Numerical experiments show good agreement with the previously appeared results. We also observe travelling front solutions, the phenomenon of pattern formation and the possibility of survival for a dominated species due to a segregation effect.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 59, Issue 5, May 2009, Pages 1059-1074