کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646274 1632217 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions
چکیده انگلیسی

By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations.It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under non-local boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 56, Issues 3–4, March–April 2006, Pages 318-331