کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646341 1632216 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computation of dynamical phase transitions in solids
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
Computation of dynamical phase transitions in solids
چکیده انگلیسی

This paper deals with the dynamics of phase boundaries in a nonlinear elastic two-phase material. We consider the elasticity system in 1D and the equations of anti-plane shear motion in 2D, where effects of viscosity and capillarity are neglected. These first-order conservation laws allow to represent phase boundaries as shock-like sharp interfaces. However, in contrast to what is known for homogeneous materials, the entropy inequality does not select a unique solution, and an additional criterion, the so-called kinetic relation, is required.Based on a scheme introduced by Hou, Rosakis and LeFloch [T. Hou, Ph. Rosakis, P.G. LeFloch, A level-set approach to the computation of twinning and phase-transition dynamics, J. Comput. Phys. 150 (1999) 302–331] we focus on the numerical solution of a specific model system. Using a level-set technique to enforce the kinetic relation on the discrete level leads to a reformulation of the original system in the form of a system of conservation laws coupled to a Hamilton–Jacobi equation for each phase boundary. The numerical method for the reformulated system is constructed for unstructured meshes (in 2D), and a self-adaptive algorithm is introduced.In the 1D-case we show that the reformulated system has a solution that corresponds to exact dynamical phase boundaries of the elasticity system which obey the kinetic relation. To validate the method in 2D, we present computations on the interaction of a plane wave with a phase boundary. The efficiency of the adaptation mechanism is demonstrated by an example showing the development of microstructures by twinning.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 56, Issues 10–11, October–November 2006, Pages 1450-1463