کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646593 1342307 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Metric compactification of infinite Sierpiński carpet graphs
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Metric compactification of infinite Sierpiński carpet graphs
چکیده انگلیسی

We associate, with every infinite word over a finite alphabet, an increasing sequence of rooted finite graphs, which provide a discrete approximation of the famous Sierpiński carpet fractal. Each of these sequences converges, in the Gromov–Hausdorff topology, to an infinite rooted graph. We give an explicit description of the metric compactification of each of these limit graphs. In particular, we are able to classify Busemann and non-Busemann points of the metric boundary. It turns out that, with respect to the uniform Bernoulli measure on the set of words indexing the graphs, for almost all the infinite graphs, the boundary consists of four Busemann points and countably many non-Busemann points.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 339, Issue 11, 6 November 2016, Pages 2693–2705
نویسندگان
, ,