کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646602 1342307 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The 3/5-conjecture for weakly S(K1,3)-free forests
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The 3/5-conjecture for weakly S(K1,3)-free forests
چکیده انگلیسی
The 3/5-conjecture for the domination game states that the game domination numbers of an isolate-free graph G on n vertices are bounded as follows: γg(G)≤3n5 and γg′(G)≤3n+25. Recent progresses have been made on the subject and the conjecture is now proved for graphs with minimum degree at least 2. One powerful tool, introduced by Bujtás, is the so-called greedy-like strategy for Dominator. In particular, using this strategy, she has proved the conjecture for isolate-free forests without leaves at distance exactly 4. In this paper, we improve this strategy to extend the result to the larger class of weakly S(K1,3)-free forests, where a weakly S(K1,3)-free forest F is an isolate-free forest without induced S(K1,3), whose leaves are leaves of F as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 339, Issue 11, 6 November 2016, Pages 2767-2774
نویسندگان
,