کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646823 1342314 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using error-correcting codes to construct solvable pebbling distributions
ترجمه فارسی عنوان
با استفاده از کدهای تصحیح خطا برای ساخت توزیع های پراکنده قابل حل
کلمات کلیدی
پببلینگ، خرگوش مطلوب، تئوری کدینگ، کدهای خطا اصلاح
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

In pebbling problems, pebbles are placed on the vertices of a graph. A pebbling move   consists of removing two pebbles from one vertex, throwing one away, and moving the other pebble to an adjacent vertex. We say a distribution DD is solvable   if starting from DD, we can move a pebble to any vertex by a sequence of pebbling moves. The optimal pebbling number   of a graph GG is the smallest number of pebbles in a solvable distribution on GG.It is known that every solvable distribution on the nn-dimensional hypercube QnQn contains at least (43)n pebbles. Fu, Huang, and Shiue, building on the work of Moews, used probabilistic methods to show that there are solvable distributions where the number of pebbles is in O((43)nn32), but hitherto, the number of pebbles in the best constructed distributions was in O(1.377n)O(1.377n).We use error-correcting codes to construct solvable distributions of pebbles on QnQn in which the number of pebbles is in O(1.34n)O(1.34n).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 339, Issue 1, 6 January 2016, Pages 318–326
نویسندگان
,