کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4647089 1342327 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On geodesic transitive graphs
ترجمه فارسی عنوان
در نمودار گرافیکی جغرافیایی
کلمات کلیدی
نمودارها، فاصله-گذارپذیری، جغرافیایی-ترانزیتی، ترانزیتی قوس،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
The main purpose of this paper is to investigate relationships between three graph symmetry properties: s-arc transitivity, s-geodesic transitivity, and s-distance transitivity. A well-known result of Weiss tells us that if a graph of valency at least 3 is s-arc transitive then s≤7. We show that for each value of s≤3, there are infinitely many s-arc transitive graphs that are t-geodesic transitive for arbitrarily large values of t. For 4≤s≤7, the geodesic transitive graphs that are s-arc transitive can be explicitly described, and all but two of these graphs are related to classical generalized polygons. Finally, we show that the Paley graphs and the Peisert graphs, which are known to be distance transitive, are almost never 2-geodesic transitive, with just three small exceptions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 338, Issue 3, 6 March 2015, Pages 168-173
نویسندگان
, , , ,