کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4647249 | 1632411 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Anti-magic labeling of trees
ترجمه فارسی عنوان
برچسب زدن سحر و جادو درختان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برچسب برچسب ضد جادویی، درخت،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
An anti-magic labeling of a graph G is a one-to-one correspondence between E(G) and {1,2,â¦,|E|} such that the vertex-sum (i.e., sum of the labels assigned to edges incident to a vertex) for distinct vertices are different. It was conjectured by Hartsfield and Ringel that every tree other than K2 has an anti-magic labeling. Kaplan, Lev and Roditty proved that if a tree T has at most one degree 2 vertex, then T is anti-magic. We study trees with many degree 2 vertices, with restriction on the subgraph induced by degree 2 vertices and its complement. Denote by V2(T) the set of degree 2 vertices of T. We prove that if V2(T) and VâV2(T) are both independent sets, or V2(T) induces a path and every other vertex has an odd degree, then T is anti-magic. We also correct an error in the original proof of Kaplan, Lev and Roditty.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 331, 28 September 2014, Pages 9-14
Journal: Discrete Mathematics - Volume 331, 28 September 2014, Pages 9-14
نویسندگان
Yu-Chang Liang, Tsai-Lien Wong, Xuding Zhu,