کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4647450 1342352 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Triple metamorphosis of twofold triple systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Triple metamorphosis of twofold triple systems
چکیده انگلیسی
In a simple twofold triple system (X,B), any two distinct triples T1, T2 with |T1∩T2|=2 form a matched pair. Let F be a pairing of the triples of B into matched pairs (if possible). Let D be the collection of double edges belonging to the matched pairs in F, and let F∗ be the collection of 4-cycles obtained by removing the double edges from the matched pairs in F. If the edges belonging to D can be assembled into a collection of 4-cycles D∗, then (X,F∗∪D∗) is a twofold 4-cycle system called a metamorphosis of the twofold triple system (X,B). Previous work (Gionfriddo and Lindner, 2003  [7]) has shown that the spectrum for twofold triple systems having a metamorphosis into a twofold 4-cycle system is precisely the set of all n≡0,1,4 or 9(mod12), n≥9. In this paper, we extend this result as follows. We construct for each n≡0,1,4 or 9(mod12), n≠9 or 12, a twofold triple system (X,B) with the property that the triples in B can be arranged into three sets of matched pairs F1, F2, F3 having metamorphoses into twofold 4-cycle systems (X,F1∗∪D1∗), (X,F2∗∪D2∗), and (X,F3∗∪D3∗), respectively, with the property that D1∪D2∪D3=2Kn. In this case we say that (X,B) has a triple metamorphosis. Such a twofold triple system does not exist for n=9, and its existence for n=12 remains an open and apparently a very difficult problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 313, Issue 19, 6 October 2013, Pages 1872-1883
نویسندگان
, , ,