کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4647494 1342354 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorial constructions for maximum optical orthogonal signature pattern codes
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Combinatorial constructions for maximum optical orthogonal signature pattern codes
چکیده انگلیسی

An (m,n,k,λa,λc)(m,n,k,λa,λc) optical orthogonal signature pattern code (OOSPC) is a family CC of m×nm×n   (0,1)(0,1)-matrices of Hamming weight kk satisfying two correlation properties. OOSPCs find application in transmitting two-dimensional image through multicore fiber in CDMA networks. Let Θ(m,n,k,λa,λc)Θ(m,n,k,λa,λc) denote the largest possible number of codewords among all (m,n,k,λa,λc)(m,n,k,λa,λc)-OOSPCs. An (m,n,k,λa,λc)(m,n,k,λa,λc)-OOSPC with Θ(m,n,k,λa,λc)Θ(m,n,k,λa,λc) codewords is said to be maximum  . For the case λa=λc=λλa=λc=λ, the notations (m,n,k,λa,λc)(m,n,k,λa,λc)-OOSPC and Θ(m,n,k,λa,λc)Θ(m,n,k,λa,λc) can be briefly written as (m,n,k,λ)(m,n,k,λ)-OOSPC and Θ(m,n,k,λ)Θ(m,n,k,λ). In this paper, some direct constructions for (3,n,4,1)(3,n,4,1)-OOSPCs, which are based on skew starters and an application of the Theorem of Weil on multiplicative character sums, are given for some positive integer nn. Several recursive constructions for (m,n,k,1)(m,n,k,1)-OOSPCs are presented by means of incomplete different matrices and group divisible designs. By utilizing those constructions, the number of the codewords of a maximum (m,n,4,1)(m,n,4,1)-OOSPC is determined for any positive integers m,nm,n such that gcd(m,18)=3gcd(m,18)=3 and n≡0(mod12). It is established that Θ(m,n,4,1)=(mn−12)/12Θ(m,n,4,1)=(mn−12)/12 for any positive integers m,nm,n such that gcd(m,18)=3gcd(m,18)=3 and n≡0(mod12).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 313, Issue 24, 28 December 2013, Pages 2918–2931
نویسندگان
, ,