کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4647518 | 1342356 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Polychromatic 4-coloring of cubic even embeddings on the projective plane
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A polychromatic  k-coloring of a map G on a surface is a k-coloring such that each face of G has all k colors on its boundary vertices. An even embedding  G on a surface is a map of a simple graph on the surface such that each face of G is bounded by a cycle of even length. In this paper, we shall prove that a cubic even embedding G on the projective plane has a polychromatic proper 4-coloring if and only if G is not isomorphic to a Möbius ladder with an odd number of rungs. For proving the theorem, we establish a generating theorem for 3-connected Eulerian multi-triangulations on the projective plane.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 313, Issue 21, 6 November 2013, Pages 2423-2431
Journal: Discrete Mathematics - Volume 313, Issue 21, 6 November 2013, Pages 2423-2431
نویسندگان
Momoko Kobayashi, Atsuhiro Nakamoto, Tsubasa Yamaguchi,