کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4647671 1342366 2013 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hamilton paths in generalized Petersen graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Hamilton paths in generalized Petersen graphs
چکیده انگلیسی

Alspach and Qin proved that connected Cayley graphs of Hamiltonian groups (all subgroups are normal) are either Hamilton-connected (every pair of vertices is joined by a Hamilton path), or are bipartite and Hamilton-laceable (every pair on opposite sides of the bipartition are joined by a Hamilton path). Their proof made use of Hamilton-connectedness of certain Generalized Petersen graphs.In this work, we extend (and make a small correction to) the results of Alspach and Liu on Hamilton paths in generalized Petersen graphs. Alspach and Liu showed that, for k∈{1,2,3}k∈{1,2,3} and gcd(n,k)=1gcd(n,k)=1, P(n,k)P(n,k) is either Hamilton-connected or bipartite and Hamilton-laceable, as long as (n,k)≠(6r+5,2)(n,k)≠(6r+5,2) or (5,3)(5,3). For k=2k=2, we consider the remaining cases for nn and completely determine which pairs of vertices in P(n,2)P(n,2) are joined by Hamilton paths. However, the main point is to show that, for each kk, it is a finite problem to determine, for all nn, which pairs of vertices in P(n,k)P(n,k) are the ends of a Hamilton path.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 313, Issue 12, 28 June 2013, Pages 1338–1341
نویسندگان
,