کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4647878 | 1342381 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterated clique graphs and bordered compact surfaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The clique graph K(G) of a graph G is the intersection graph of all its (maximal) cliques. A graph G is said to be K-divergent if the sequence of orders of its iterated clique graphs |Kn(G)| tends to infinity with n, otherwise it is K-convergent. K-divergence is not known to be computable and there is even a graph on 8 vertices whose K-behavior is unknown. It has been shown that a regular Whitney triangulation of a closed surface is K-divergent if and only if the Euler characteristic of the surface is non-negative. Following this remarkable result, we explore here the existence of K-convergent and K-divergent (Whitney) triangulations of compact surfaces and find out that they do exist in all cases except (perhaps) where previously existing conjectures apply: it was conjectured that there is no K-divergent triangulation of the disk, and that there are no K-convergent triangulations of the sphere, the projective plane, the torus and the Klein bottle. Our results seem to suggest that the topology still determines the K-behavior in these cases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 313, Issue 4, 28 February 2013, Pages 508-516
Journal: Discrete Mathematics - Volume 313, Issue 4, 28 February 2013, Pages 508-516
نویسندگان
F. Larrión, M.A. Pizaña, R. Villarroel-Flores,