کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648043 1342390 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noncrossing linked partitions and large (3,2)(3,2)-Motzkin paths
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Noncrossing linked partitions and large (3,2)(3,2)-Motzkin paths
چکیده انگلیسی

Noncrossing linked partitions arise in the study of certain transforms in free probability theory. We explore the connection between noncrossing linked partitions and (3,2)(3,2)-Motzkin paths, where a (3,2)(3,2)-Motzkin path can be viewed as a Motzkin path for which there are three kinds of horizontal steps and two kinds of down steps. A large (3,2)(3,2)-Motzkin path is a (3,2)(3,2)-Motzkin path for which there are only two kinds of horizontal steps on the xx-axis. We establish a one-to-one correspondence between the set of noncrossing linked partitions of {1,…,n+1}{1,…,n+1} and the set of large (3,2)(3,2)-Motzkin paths of length nn, which leads to a simple explanation of the well-known relation between the large and the little Schröder numbers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 312, Issue 11, 6 June 2012, Pages 1918–1922
نویسندگان
, ,