کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648061 1342391 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new characterization of projections of quadrics in finite projective spaces of even characteristic
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A new characterization of projections of quadrics in finite projective spaces of even characteristic
چکیده انگلیسی

We will classify, up to linear representations, all geometries fully embedded in an affine space with the property that for every antiflag {p,L}{p,L} of the geometry there are either 0, αα, or qq lines through pp intersecting LL. An example of such a geometry with α=2α=2 is the following well known geometry HTn. Let Qn+1Qn+1 be a nonsingular quadric in a finite projective space PG(n+1,q), n≥3n≥3, qq even. We project Qn+1Qn+1 from a point r∉Qn+1r∉Qn+1, distinct from its nucleus if n+1n+1 is even, on a hyperplane PG(n,q) not through rr. This yields a partial linear space HTn whose points are the points pp of PG(n,q), such that the line 〈p,r〉〈p,r〉 is a secant to Qn+1Qn+1, and whose lines are the lines of PG(n,q) which contain qq such points. This geometry is fully embedded in an affine subspace of PG(n,q) and satisfies the antiflag property mentioned. As a result of our classification theorem we will give a new characterization theorem of this geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 311, Issue 13, 6 July 2011, Pages 1179–1186
نویسندگان
, ,