کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648192 1342397 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
More results on cycle frames and almost resolvable cycle systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
More results on cycle frames and almost resolvable cycle systems
چکیده انگلیسی
Let J be a set of positive integers. Suppose m>1 and H is a complete m-partite graph with vertex set V and m groups G1,G2,…,Gm. Let |V|=v and G={G1,G2,…,Gm}. If the edges of λH can be partitioned into a set C of cycles with lengths from J, then (V,G,C) is called a cycle group divisible design with index λ and order v, denoted by (J,λ)-CGDD. A (J,λ)-cycle frame is a (J,λ)-CGDD (V,G,C) in which C can be partitioned into holey 2-factors, each holey 2-factor being a partition of V∖Gi into cycles for some Gi∈G. The existence of (k,λ)-cycle frames of type gu with 3≤k≤6 has been solved completely. In this paper, we show that there exists a ({3,5},λ)-cycle frame of type gu for any u≥4, λg≡0(mod2), (g,u)≠(1,5),(1,8) and (g,u,λ)≠(2,5,1). A k-cycle system of order n whose cycle set can be partitioned into (n−1)/2 almost parallel classes and a half-parallel class is called an almost resolvable k-cycle system, denoted by k-ARCS(n). It has been proved that for k∈{3,4,5,6,7,8,9,10,14} there exists a k-ARCS(2kt+1) for each positive integer t with three exceptions and four possible exceptions. In this paper, we shall show that there exists a k-ARCS(2kt+1) for all t≥1, 11≤k≤49, k≡1(mod2) and t≠2,3,5.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 312, Issue 22, 28 November 2012, Pages 3392-3405
نویسندگان
, ,