کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648267 1342403 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The number of C3⃗-free vertices on 3-partite tournaments
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The number of C3⃗-free vertices on 3-partite tournaments
چکیده انگلیسی

Let TT be a 3-partite tournament. We say that a vertex vv is C3⃗-free if vv does not lie on any directed triangle of TT. Let F3(T)F3(T) be the set of the C3⃗-free vertices in a 3-partite tournament and f3(T)f3(T) its cardinality. In this paper we prove that if TT is a regular 3-partite tournament, then F3(T)F3(T) must be contained in one of the partite sets of TT. It is also shown that for every regular 3-partite tournament, f3(T)f3(T) does not exceed n9, where nn is the order of TT. On the other hand, we give an infinite family of strongly connected tournaments having n−4n−4C3⃗-free vertices. Finally we prove that for every c≥3c≥3 there exists an infinite family of strongly connected cc-partite tournaments, Dc(T)Dc(T), with n−c−1C3⃗-free vertices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 310, Issue 19, 6 October 2010, Pages 2482–2488
نویسندگان
, , ,