کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648317 1342406 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The fractional metric dimension of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The fractional metric dimension of graphs
چکیده انگلیسی

A vertex xx in a connected graph GG is said to resolve a pair {u,v}{u,v} of vertices of GG if the distance from uu to xx is not equal to the distance from vv to xx. A set SS of vertices of GG is a resolving set for GG if every pair of vertices is resolved by some vertex of SS. The smallest cardinality of a resolving set for GG, denoted by dim(G)dim(G), is called the metric dimension of GG. For the pair {u,v}{u,v} of vertices of GG the collection of all vertices which resolve the pair {u,v}{u,v} is denoted by R{u,v}R{u,v} and is called the resolving neighbourhood of the pair {u,v}{u,v}. A real valued function g:V(G)→[0,1]g:V(G)→[0,1] is a resolving function of GG if g(R{u,v})≥1g(R{u,v})≥1 for any two distinct vertices u,v∈V(G)u,v∈V(G). The fractional metric dimension of GG is defined as dimf(G)=min{|g|:g is a minimal resolving function of G}dimf(G)=min{|g|:g is a minimal resolving function of G}, where |g|=∑v∈Vg(v)|g|=∑v∈Vg(v). In this paper we study this parameter.


► First paper presenting basic results on fractional metric dimension.
► Upper and lower fractional metric independence number—new concepts introduced in this paper.
► Fractional metric dimension of standard graphs.
► Fundamental results on graphs with fractional metric dimension n2 where nn is the order of the graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 312, Issue 9, 6 May 2012, Pages 1584–1590
نویسندگان
, ,