کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4648753 | 1342427 | 2008 | 9 صفحه PDF | دانلود رایگان |

The generalized Mycielskians of graphs (also known as cones over graphs) are the natural generalization of the Mycielskians of graphs (which were first introduced by Mycielski in 1955). Given a graph G and any integer p⩾0p⩾0, one can transform G into a new graph μp(G)μp(G), the p-Mycielskian of G. In this paper, we study the k th chromatic numbers χkχk of Mycielskians and generalized Mycielskians of graphs. We show that χk(G)+1⩽χk(μ(G))⩽χk(G)+kχk(G)+1⩽χk(μ(G))⩽χk(G)+k, where both upper and lower bounds are attainable. We then investigate the kth chromatic number of Mycielskians of cycles and determine the kth chromatic number of p -Mycielskian of a complete graph KnKn for any integers k⩾1k⩾1, p⩾0p⩾0 and n⩾2n⩾2. Finally, we prove that if a graph G is a/ba/b-colorable then the p-Mycielskian of G , μp(G)μp(G), is (at+bp+1)/bt(at+bp+1)/bt-colorable, where t=∑i=0p(a-b)ibp-i. And thus obtain graphs G with m(G)m(G) grows exponentially with the order of G , where m(G)m(G) is the minimal denominator of a a/ba/b-coloring of G with χf(G)=a/bχf(G)=a/b.
Journal: Discrete Mathematics - Volume 308, Issue 16, 28 August 2008, Pages 3565–3573