کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4648929 1632446 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On strong (weak) independent sets and vertex coverings of a graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On strong (weak) independent sets and vertex coverings of a graph
چکیده انگلیسی

A vertex vv in a graph G=(V,E)G=(V,E) is strong (weak  ) if deg(v)⩾deg(u)deg(v)⩾deg(u)(deg(v)⩽deg(u))(deg(v)⩽deg(u)) for every u   adjacent to vv in G  . A set S⊆VS⊆V is said to be strong (weak) if every vertex in S is a strong (weak) vertex in G. A strong (weak) set which is independent is called a strong independent set [SIS] (weak independent set [WIS]). The strong (weak) independence number  sα=sα(G)(wα=wα(G))sα=sα(G)(wα=wα(G)) is the maximum cardinality of an SIS (WIS). For an edge x=uvx=uv, vvstrongly covers the edge x   if deg(v)⩾deg(u)deg(v)⩾deg(u) in G. Then u weakly covers x  . A set S⊆VS⊆V is a strong vertex cover [SVC] (weak vertex cover [WVC]) if every edge in G   is strongly (weakly) covered by some vertex in SS. The strong (weak) vertex covering number  sβ=sβ(G)sβ=sβ(G)(wβ=wβ(G))(wβ=wβ(G)) is the minimum cardinality of an SVC (WVC).In this paper, we investigate some relationships among these four new parameters. For any graph G   without isolated vertices, we show that the following inequality chains hold: sα⩽β⩽sβ⩽wβsα⩽β⩽sβ⩽wβ and sα⩽wα⩽α⩽wβsα⩽wα⩽α⩽wβ. Analogous to Gallai's theorem, we prove sβ+wα=psβ+wα=p and wβ+sα=pwβ+sα=p. Further, we show that sα⩽p-Δsα⩽p-Δ and wα⩽p-δwα⩽p-δ and find a necessary and sufficient condition to attain the upper bound, characterizing the graphs which attain these bounds. Several Nordhaus–Gaddum-type results and a Vizing-type result are also established.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 307, Issues 9–10, 6 May 2007, Pages 1136–1145
نویسندگان
, ,